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The electronic states of  one-electron diatomic molecules possess two types 
of  symmetry, geometrical and dynamical. The latter is in general ignored 
when the LCAO description is adapted. We demonstrate how i t  can be 
included, and how its inclusion modifies the ordinary description in regions 
where states of  the same geometrical symmetry cross. 
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I. Introduction 

The problem of a single electron in the electrostatic field of  two fixed nuclei is 
defined by the Hamiltonian 

h 2 ka kb 
- - - V  2 . . . .  (1) 

H = 2 m  ra rb 

where ka and kb are the strengths of  the two point charges, m is the mass of  the 
electron, and h is Planck's constant divided by 2~. ra and rb are the distances 
from the electron to the two nuclei, whose positions we denote by A and B, 
respectively. The situation is depicted in Fig. 1 which also defines three appropri-  
ate coordinate systems with parallel axes. 

The geometrical symmetry of the two-center problem, namely, the rotational 
invariance about the internuclear axis, involves that the angular momentum A 
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Fig. 1. Coordinate system for diatomic molecules 
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about that axis is a constant of the motion, i.e. h commutes with the Hamiltonian 
(1). Referring to Fig. 1 we have that 

h = l~z = lbz = l~ (2 )  

with la, lb, and I denoting the angular momentum of  the electron about the centres 
A, B, and 0, respectively. 

But in addition to the geometrical symmetry represented by h, the two-centre 
problem defined by Eq. (1) also possesses dynamical symmetry. The correspond- 
ing constant of the motion may be written in any of the three equivalent forms 

I~ - m R (  M ~  +---~-b ) kbzb (3a) 

12 -- R2 (Px q- Py) 4- (3C)  mR( 
4 \ r~ rb / 

which refer, respectively, to the coordinate systems centered at A, B, and 0 in 
Fig. 1. p is the linear momentum of the electron and M denotes the Runge-Lenz 
vector whose components are constants of the motion in the one-center problem 
[1, Sect. 30]. Thus 

1 kar~ 
Ma = ~ (p, x 1,~ - la x p a )  - (4a) 

z m  ra 

1 kbrb 
M b  = ~ (Pb X Ib --  lb X p b )  --  ( 4 b )  

z m  rb 

The form of N was first discovered and discussed by Erikson and Hill [2]. Their 
treatment was elaborated by Coulson and Joseph [3] who also extended the 
definition of  N to a space of arbitrary dimension. Both pairs of authors pointed 
out that the presence of N is tied to the fact that the two-center problem defined 
by (1) is separable in prolate spheroidal coordinates with A and B as foci. 
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Subsequently Helfrich [4] constructed constants of the motion for all problems 
with cylinder symmetry which separate in spheroidal coordinates. Thus, the 
solutions of the Schr6dinger equation 

H4, = Er (5) 

may be written in the form 

6,,~,,~m(tx, v, 6 ) = C U ( ~ ) V ( v ) e x p ( i m d 9 ) ,  m = 0 , •  1, •  (6) 

where 
r~ + r b r~ - rb (7) 

/x-- R ' v =  R 

and ~b is the angle about the internuclear axis, while C is a normalization constant. 
The quantum numbers n~ and n~ give the number of nodes in U(/z) and V(v), 
respectively. 

Thanks to the separability, the SchrSdinger equation (5) can be solved exactly 
for all values of the internuclear distance R, from the united-atom limit (R = 0) 
to the limit of separated atoms (R-0o) .  The resulting wavefunctions are pro- 
totypes of molecular orbitals (MOs) for diatomic molecules and have been much 
discussed, especially for the homonuclear case. Much attention has also been 
paid to the so-called correlation diagram, which for a particular choice of nuclear 
charges shows the variation of the molecular orbital energies as functions of R, 
between the limits R = 0, and R -  oo. A correlation diagram for the six lowest 
or-states of the hydrogen molecular ion H + is shown in Fig. 2. 

The number of paper discussing the solutions (6) is quite large. For references 
we refer to the comprehensive treatments in Refs. [5-9]. Approximate solutions 
are reviewed in Refs. [7], [10], and [11]. 

Fig. 2, Some electronic energy levels 
of  H~ as functions of  internuclear dis- 
tance (calculated by Power's one-elec- 
tron diatomie molecule program [12]) 
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Since the operators defined by (1), (2), and (3) form a commuting set, the exact 
wavefunctions (6) must be common eigenfunctions of all three operators. Hence, 
we have, in addition to Eq. (5), that 

A@n,~n~m = mh@n.~n~m (8) 

and 

N O . ~ . v , ,  = - A ' ~ , , , ,  . . . .  (9) 

The eigenvalue - A '  is, in atomic units, essentially the/~, v separation constant 
obtained by separating Eq. (5) according to the product form (6). Thus, A' is 
tabulated in, say Refs. [6] and [8], for each of the lower states of H~-, as a function 
of R. 

Molecular orbitals for molecules with more than one electron are most often 
represented as linear combinations of atomic orbitals (LCAOs). Hence, there has 
also been much interest in LCAO MO approximations to the functions (6), in 
particular for the low-lying states of  H~, [7], [10], [11]. In set t ing 'up such 
approximations one usually assures that Eq. (8) is exactly fulfilled, whereas Eq. 
(5) is replaced by the variational equation 

a < g, lHlg,> =o.  (10) 

No attempt has been made, however, to include the operator N, and hence Eq. 
(9), in this type of  description. 

It is the purpose of  the present paper to remedy this situation. We have considered 
the 8 lowest-lying electronic states of H2 in a fairly simple LCAO MO description 
and compared calculated values of A' with the exact ones. Special emphasis has 
been paid to the crossing of energy levels for states with the same m-value. The 
results of our investigation are presented in the following sections. 

2. Characterization of states and basis sets 

The H~- electronic states that we have analyzed are those that dissociate to atomic 
states with the principal quantum number equal to 1 or 2. The general characteris- 
tics of these states are listed in Table 1. The central column gives the quantum 
numbers of the states according to Eq. (6) and the neighbouring columns the 
quantum numbers in the united-atom and separated-atoms limits. In the united-  
atom limit the spheroidal coordinates become spherical polar coordinates about 
0 (Fig. 1), and in the separated-atoms limit they become parabolic coordinates 
about A and B. The precise definition of  nl, n2 and m is then that they are the 
parabolic quantum numbers at A, in the notation used by Schiff [1, Sect. 16]. 
The principal quantum number at A (and B) has the value nl + n2+ Iml+ 1. The 
connexion between the quantum numbers in these three middle columns is 
obtained by requiring that the number of  nodes be independent of R, as discussed 
in great detail by Morse and Stueckelberg [13]. See also [9]. 

The state designation given in the first column of Table 1 is the one usually used 
for H~ (Fig. 2). It refers, of  course, to the quantum numbers in column 4, and 
to the fact that the electronic states of a homonuclear diatomic molecule are 
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Table 1. Values of  the energy (in Rydbergs), - A '  (in a.u.), and the various quantum numbers in the 
united-atom and the separated-atoms limits 

United Atom Molecule Separated Atoms 

D e s i g n a t i o n - E  - A '  nllm I nan~]m I n~n21ml - A '  - E  Designation 

lso'g 4 0 100 000 000 R 1 ~gls 
2 so-g 1 0 200 100 100 R / 2 ~ o~g2 d/~ 
3do-g _49 6 320 020 010 3R/2 41 o. 2diln 
2ptr u 1 2 210 010 000 R 1 o', ls 
3P~ _49 2 310 100 100 R/2  �88 o'u2di ~ 
4f% �88 12 430 030 010 3R/2  14 o, 2di~n 
2pqr u 1 2 211 001 001 R �88 ~-~2p 
3d~rg 4 6 321 011 001 R �88 ~-g2p 

either even or odd (geometrical symmetI:y). The designation given in the last 
column is derived from the quantum numbers in column 6 in a self explanatory 
way. As in Ref. [11], 2di in is a digonal hybrid at A with its vertex pointing toward 
B, 2di ~ is a similar hybrid with its vertex pointing away from B. 

The energies in columns 2 and 8 are directly derived from the Balmer formula. 
The unit of  energy is the Rydberg unit, since this is the unit used in the extensive 
tables of  Refs. [6] and [8]. 

The LCAO MO description of the states of Table 1 is in our work based on the 
following set of hydrogen-like atomic orbitals on centres A and B, 

t 
( l s )  = 7r-1/2(2f) 3/2 exp ( - 2 f r )  

(2s) = 7r-1/2f3/2(1 - fir) exp (-fir)  

(2po) = 7r-1/2fS/2r exp (-fir)  cos 0 (11) 

(2p• = (2~)-'/2fS/2r exp ( - f r )  sin 0 exp ( •  iqS) 

where (r, 0, 4~) are spherical polar coordinates about A and B. The orbital 
exponent f is a variational parameter depending on R and the state considered. 
With this basis set we can represent the separated-atoms limit correctly for all 
the states studied here, whereas only the l scrg, 2so'g, 2p%, and 2p~-u states can 
be correctly represented in the united-atom limit. The basis set is, however, 
sufficiently flexible for our purpose which is to illustrate how the dynamical 
symmetry is incorporated in the LCAO MO description. 

We shall now consider this description in detail and, for simplicity, we consider 
the two 7r states of Table 1 first. 

3. The 2 p ~  and 3davg states 

With the basis (11), the LCAO MOs of these states are completely determined 
by the geometrical symmetry, apart from the value of f. They are 

qJ = [2(1 + S)]-l/2{(2p~)a • (2pTr)b} (12) 
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where the upper sign refers to the 2pTru state, the lower sign to the 3d'rrg state. 
(2pTr) is either 2pl on A and B, or 2p_1 on A and B, and S is the overlap integral, 

S = ((2p0a 1(2p0 b). (13) 

The electronic energies of the states are 

E =(q, IHIO). (14) 

Inspired by Slater's discussion of the 1 scrg state [7] we write 

E = ~2F,(w) + ~F2(w). (15) 

with w = fiR. Further, we measure lengths in atomic units and energies in Rydberg 
units, and find by standard methods [14] 

S = e-W(1 + w+2wZ+~w 3) (16) 

F1 = (1 + S)-I{ 1 + e-W(1 + w +4w2 - ~w3)} (17) 

W W \ W W 2 W3/  

(18) 
+ 2e-W(1 + w +�89 

Again, the upper sign refers to the 2p~-u state and the lower sign to the 3d~-g state. 

Minimization of the expression (15) with respect to ff at fixed internuclear distance 
gives 

F2 + wdF2/ dw 
= (19) 

2F~ + wdFl/ dw" 

By solving this equation with R as a parameter we obtain the MOs (12) and 
energies (14) as functions of R. The results are shown in Tables A.6 and A.7 for 
some selected values of R, together with the exact energies, E(exact).  

Also shown in Tables A.6 and A.7 is - A '  (exact), as obtained from the separation 
constant in spheroidal coordinates. It is the exact eigenvalue of Eq. (9) and 
represents the dynamical symmetry of  the problem. In the LCAO MO method 
we approximate it with the expectation value of  N, 

- A ' =  (r (20) 

The closer agreement there is between the values of - A '  and - A '  (exact), the 
better does the approximate wavefunction reflect the dynamical symmetry. 

The - A '  values calculated from Eq. (20) are also given in Tables A.6 and A.7, 
and we see that the simple wavefunctions (12) in fact give a fairly good representa- 
tion of  the dynamical symmetry for all values of R, for both ~r states. As pointed 
out in the previous section we cannot obtain a correct wavefunction for the 3d~g 
state as R tends to zero, and this is reflected in the calculated E values. However, 
the minus combination in (12) does become a d function at R = 0, and hence it 
gives the correct limiting value for the eigenvalue of N. 
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The favorable agreement between the values of - A '  and - A '  (exact) for the 2p~'u 
and 3d~rg states shows, that it is meaningful to talk about dynamical symmetry 
also for approximate wavefunctions. The dynamical symmetry itself becomes in 
this way less esoteric, and the meaning of the separation constant in spheroidal 
coordinates becomes more transparent. 

The actual evaluation of integrals containing the operator N, like the integral in 
Eq. (20), will be discussed in the Appendix. 

4. The ~g  and r states 

The basis (11) allows us to construct three crg states and three o-u states. They 
have the general form 

= {c,(1 s)a + c2(2s)~ + c3(2p0)a} + {c,(1 s)b + c2(2s)b - c3(2po)b} (21) 

where the upper sign refers to the crg states and the lower sign to the ~ru states. 

Applying the variational equation (10) for each value of R leads to the energy 
ordered states 1 o-g, 2o-g, 3o-g and 1 or., 2o'., 3o'.. Each of these states is characterized 
by an orbital exponent if(R) and a set of coefficients ci(R). To determine them 
we have solved the secular equation 

Hc = ScE (22) 

as a function of ~ for each R value, and then assigned ~" values to states such 
that the energy of each state becomes as low as possible. (In Eq. (22) H is the 
matrix of the Hamiltonian, S the overlap matrix, E the matrix of eigenvalues 
and c the matrix of eigenvectors.) 

Having determined the LCAO MOs in this way we have next used Eq. (20) for 
each state to obtain the expectation values of N as functions of R. 

The results of these calculations are presented and evaluated in Tables A.1-A.5 
and in Figs. 3 and 4. 

Thus, Table A.1 compares the lcrg results with the exact lso'g results. It shows 
that the LCAO MO gives a very good description of the ground state, both for 
the energy and the dynamical symmetry. Similarly, Table A.4 shows that the 1 cru 
function gives a very good picture of the 2per, state. 

The 2O-g and 3trg results are less satisfactory in so far as they fail to give a correct 
representation of the crossing between the 2scrg and the 3dang energy levels at 
R = 4.05 a.u. 

In fact, the LCAO calculations predict an avoided crossing, as shown in Fig. 3. 
Furthermore the 2~g and 3trg expectation values of  N, plotted as functions of 
R, change rapidly and actually cross in the region where the avoided crossing of 
the energy levels occurs. This is shown in Fig. 4. 

Away from the crossing region the LCAO description gives a qualitatively correct 
representation of the 2SCrg and 3dtrg states, except for the 3do'g state at small R, 
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Fig. 3. Energy curves of the 2strg and the 3dtrg states in the crossing region. Solid curves, LCAO MO 
calculations. Dashed curves, exact calculations 
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Fig. 4. Values of  - A '  for the 2so,~ and the 3do'g states in the energy crossing region. Solid curves, 
LCAO MO calculations. Dashed curves, exact values 

where  A '  a p p r o a c h e s  the  wrong  l imit ing value.  This is shown in Tables  A.2 and  
A.3. 

The unsa t i s f ac to ry  L C A O  behav io r  o f  A '  for  the  3do-g state at smal l  R values  
cou ld  eas i ly  be r e m o v e d  by  add ing  a 3d  func t ion  to the  basis  set (11). The 
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situation at the crossing point is much more difficult to restore. We shall discuss 
it further in the next section. 

Table A.5 analyses the LCAO description of  the 3po-~ state. Satisfactory results 
are obtained both for E and A' except in the region where the 3po-~ and 4fo-u 
energy levels cross (See Fig. 2). The situation about this crossing point is similar 
to the situation described above, and hence we shall not discuss it further. 

The 4fo'u state can not be adequately represented with the basis set (11) because 
of two level crossings. Besides crossing the 3po-u level at large R, the 4fir~ level 
crosses the 4po-u level at small R. For this reason no table is presented for the 
4firu state. 

5. The 2str~, 3dtrg energy level crossing 

The behavior of the exact and the approximate energy curves in the crossing 
region (Fig. 3) is easily understood in the light of the noncrossing rule for diatomic 
molecules [15], according to which energy levels of the same symmetry will not 
cross when the internuclear separation is varied. 

To apply this rule correctly all symmetries of the problem must be included [3]. 
The 2so-g and the 3do-g states have the same geometrical symmetry, but they differ 
with respect to dynamical symmetry, as the A' values in Tables A.2 and A.3 show. 
Hence, the crossing of  the exact energy curves does not contradict the noncrossing 
rule. 

The avoided crossing of  the LCAO curves reflects the fact that the small basis 
set (11) is unable to give an exact representation of the dynamical symmetry in 
the crossing region. In a terminology due to Hatton [16] we may say, that the 
basis set symmetry only includes the geometrical symmetry. Accordingly, the 2trg 
and the 3trg energy curves cannot cross. 

The noncrossing rule is intimately tied to the variational Eq. (10), i.e. the 
Hamiltonian is given a preferred status. It may, however, be argued that the 
operators H and N should be treated on the same footing, especially in the 
crossing region. In the LCAO description this is tantamount to saying that the 
matrices of H and N, as defined by the basis set (11), should play equal roles 
in the determination of the LCAO MOs. 

The LCAO coefficients determined from (10) are eigenvectors of the H matrix. 
They would also be eigenvectors of  the N matrix if the basis set were complete. 
But since this is not the case the H and the N matrices fail to commute, and 
hence they cannot be simultaneously diagonalized. In other words, they cannot 
lead to one common set of LCAO MOs. 

Accordingly, it becomes of interst to consider two different LCAO solutions in 
the crossing region, one obtained by diagonalizing the H matrix, the other 
obtained by diagonalizing the N matrix. We have determined such solutions by 
using the basis set (11) defined by the ~" values from the original 3O-g calculation. 
The results are shown in Figs. 5-7. 
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Thus, Fig. 5 shows the 2% and 3% energy levels obtained by diagonalizing the 
H matrix. The 3O-g curve is the same as in Fig. 3, but the 2crg curve lies above 
that of  Fig. 3 since the ff values are optimized for the 3% curve, and not for the 
2Org curve. 

In Fig. 6 we show the energy curves obtained by first diagonalizing the N matrix, 
and then calculating the expectation value of  H from the eigenvectors of N. It 
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is seen that  these new energy curves cross in much  the same way as the exact 
ones do. 

The A '  values obta ined by diagonalizing the N matrix are shown in Fig. 7 together  
with the exact values. The two resulting curves are seen to be almost  identical. 
Also shown in Fig. 7 are the expectat ion values o f  N obtained by diagonalizing 
the H matrix. As in Fig. 4 a rapid variat ion occurs in the crossing region. 

Thus it appears  that  we obtain the best qualitative behavior  o f  the energy levels 
in the crossing region by diagonalizing the N matrix rather than the H matrix. 

A similar result is obta ined for the L C A O  description o f  the 3per, and 4fo-u states 
in the region where the exact curves cross. 

6. Conclusion 

The electronic wavefunct ions  o f  the hydrogen  molecular  ion are prototypes  o f  
molecular  orbitals for  homonuc lea r  dia tomic molecules,  and there has accordingly 
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been  much  interest  in the LCAO MO descr ip t ion of these funct ions.  In  fact, most  
e lementary  textbooks in q u a n t u m  chemistry inc lude  a discussion of this descrip- 
tion. Such discussions  tend,  however,  to ignore  the dynamica l  symmetry of the 
problem.  The inc lus ion  of  this symmetry  is necessary in order  to account  for the 
crossing of  energy curves for states of  the same geometrical  symmetry.  

Since this is by now rather well known,  we have found  it of  impor tance  to 
demons t ra te  that  it is quite s traightforward to incorpora te  the dynamica l  symmetry 

in the LCAO descript ion.  Accordingly ,  we have presented a set of  tables and  a 
series of  figures in which not  only the energy but  also the dynamica l  symmetry 
is analysed,  for the lower electronic states of  H~, in both  the LCAO and  the 
exact descript ion.  

The result  of  our  analysis  is that  even fairly simple LCAO wavefunc t ions  account  
well for the dynamica l  symmetry.  In  order  to obta in  a qual i tat ively correct 

behav iour  in the critical crossing regions it is, however,  necessary to diagonal ize  
the dynamica l  symmetry  operator  rather  than  the Hami l ton ian .  

Acknowledgment The authors want to thank Dr. Helge Johansen for valuable discussions. 

Appendix 1. The matrix elements of  N 

For a given LCAO MO, the expectation value of N is a linear combination of matrix elements of 
the type 

N,j = (6,1N1r (m.1) 

where ~b~ and 0i are atomic orbitals of the form (ll), at either A or B. The evaluation of N~j is 
facilitated by the fact that these orbitals have been chosen to be hydrogen-like. 

Let us assume that r is located at B, and that its l quantum number is I b. We adopt the expression 
(3b) for N, with k a = k b = l and the electron mass m = 1 (atomic units), and get: 

Nij =(r + RMbz+ RZ~]r 
r~ 

= lb(lb + 1)(r247 R(r R(~,I z~ Icj). (A.2) 
ra 

To evaluate the integral (gPi[Mbziej) we write thj as a linear combination of hydrogen-like orbitals 
in parabolic coordinates and take advantage of the fact that these new orbitals are eigenfunctions of 
Mb(~'), where Mb(~) is obtained from Eq. (4b) by replacing k b = 1 with k b = r. We write accordingly 

(r162 ~ &j) (A.3) 

and reduce the first integral on the right hand side to a linear combination of overlap integrals. The 
remaining integrals in (A.2) and (A.3) are then evaluated by elementary means [14]. 

If qSj is located on A rather than B we adopt the expression (3a) for N and proceed in a similar 
fashion as above. 

In closing, we note that one-center matrix elements of M between hydrogenic or Slater type orbitals 
have been discussed elsewhere by Lohr [17]. 
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Appendix 2. The lower states of the H~ ion 

Table A.1. The lso-g state 

R a ~ - E  a - E  (exact) b - A  'a - A '  (exact) b 

0.2 0.96816 3.856734 3.857241 0.02576 0.025693 
0.4 0.91661 3.598297 3.601508 0.09647 0.095731 
1.0 0.77445 2.886848 2.903573 0.48288 0.475947 
2.0 0.62926 2.182063 2.205268 1.40439 1.393539 
3.0 0.55767 1.804247 1.821792 2.46293 2.458030 
4.0 0.52326 1.581482 1.592170 3.56829 3.569090 
5.0 0.50829 1.443141 1.448841 4.67458 4.677560 
6.0 0.50277 1.354478 1.357271 5.75899 5.761839 
8.0 0.50050 1.254489 1.255141 7.85476 7.856078 

10.0 0.50016 1.200957 1.201157 9.89517 9.895643 
12.0 0.50001 1.166917 1.167003 11 .91546 11.915635 
14.0 0.49996 1.142950 1.142995 13.92820 13.928273 
16.0 0.49996 1.125047 1.125073 15.93734 15.937380 
18.0 0.49998 1.111139 1.111155 17.94436 17.944381 
20.0 0.49999 1.100018 1.100029 19.94995 19.949961 

a Energies in Rydbergs, R and - A '  in atomic units. 
b Exact values calculated by Power's one-electron diatomic molecule program [14] 

Table A.2. The 2strg state a 

R ~ - E  - E  (exact) - A '  - A '  (exact) 

0.2 0.97970 0.981772 0.981910 0.00669 0.006545 
0.4 0.94456 0.947305 0.948199 0.02683 0.025264 
1.0 0.84473 0.839683 0.845849 0.16626 0.140308 
2.0 0.73255 0.707030 0.721730 0.60716 0.473264 
3.0 0.67077 0.620054 0.637774 1.26207 0.924837 
4.0 0.69936 0.569866 0.577030 3.89452 1.454587 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.0 0.57416 0.513988 0.531012 2.21444 2.034821 
6.0 0.55808 0.480957 0.495109 2.85847 2.644476 
8.0 0.53721 0.434771 0.443555 4.08445 3.889907 

10.0 0.52625 0.404434 0.409421 5.24557 5.106172 
12.0 0.51993 0.383062 0.385836 6.35685 6.265908 
14.0 0.51582 0.367136 0.368727 7.43487 7.376319 
16.0 0.51288 0.354743 0.355709 8.49218 8.453325 
18.0 0.51068 0.344780 0.345404 9.53662 9.509613 
20.0 0.50898 0.336574 0.336999 10 .57273 10.553066 

a The LCAO MO results above the broken line are from the 2gg calculation, those below the line 
from the 3o-g calculation 
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Table A.3. The 3dtrg state a 

R ~" - E  - E  (exact) - A '  - A '  (exact) 

0.2 0.45003 0.426366 0.444671 4.80697 6.002118 
0.4 0.44725 0.425320 0.445355 4.84324 6.008486 
1.0 0.44074 0.424574 0.450369 5.02494 6.053745 
2,0 0.45442 0.442240 0.471555 5.48778 6.226856 
3.0 0.50430 0.489265 0.515009 6.11194 6.566134 
4.0 0.57405 0.549843 0.571448 6.75547 7.146648 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.0 0.56115 0.595667 0.612026 7.86651 7.991630 
6.0 0.57723 0.609625 0.624990 8.99074 9.057206 
8.0 0.56527 0.584123 0.597023 11.56529 11.629215 

10.0 0.53808 0.535515- 0.546235 14.44758 14.530592 
12.0 0.51242 0.488526 0.497326 17.49196 17.592475 
14.0 0.49335 0.448907 0.455970 20.62669 20.733189 
16.0 0.48191 0.417005 0.422505 23.80926 23.906713 
18.0 0.47755 0.391935 0.396058 27.00624 27.082437 
20.0 0.47847 0.372586 0.375532 30.18838 30.239564 

a The LCAO MO results above the broken line are from the 3trg calculation, those below the line 
from the 2ag calculation 

Table A.4. The 2ptr u state 

R s r - E  - E  (exact) - A '  - A '  (exact) 

0.2 1.00297 1.005351 1,005355 2.00403 2.004021 
0.4 1.01085 1.021500 1.021568 2.01653 2.016334 
1.0 0.73090 1.129041 1.129627 2.11550 2.112417 
2.0 0.39931 1.333608 1.335069 2.52183 2.521958 
3,0 0.46628 1.402610 1.402837 3.19663 3.196382 
4.0 0.48789 1.390840 1.391101 4.02668 4.025941 
5.0 0.49672 1.354217 1.354583 4.94204 4.941274 
6.0 0.50000 1.314249 1.314621 5.90409 5.903660 
8.0 0.50109 1,246974 1.247212 7.89059 7.890707 

10.0 0.50080 1.199679 1.199802 9.90274 9.902955 
12.0 0.50049 1.166718 1.166782 11.91689 11.917051 
14.0 0.50028 1.142924 1.142960 13,92844 13.928532 
16,0 0.50015 1.125045 1.125067 15.93737 15.937426 
18.0 0.50008 1.111140 1.111154 17.94436 17.944389 
20.0 0.50004 1.100019 1.100028 19.94994 19,949962 
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Table A.5. The 3po-u state a 

R r - E  - E  (exact) - A '  - A '  (exact) 

0.2 0.54311 0.445239 0.446026 2.00178 2.001784 
0.4 0.55012 0.450071 0.450738 2.00721 2.007210 
1.0 0.58463 0.478090 0.478631 2.04799 2.047765 
2.0 0.62077 0.510382 0.510826 2.20394 2.202550 
4.0 0.58335 0.488437 0.490219 2.76422 2.758480 
6.0 0.55216 0.452635 0.454865 3.54456 3.527399 
8.0 0.53845 0.422965 0.424967 4.45949 4.426124 

10.0 0.52890 0.399520 0.401172 5.44327 5.400450 
11.0 0.52531 0.389739 0.391204 5.95728 5.904292 

12.0 0.52102 0.381020 0.382320 6.46794 6.414889 
13.0 0.51909 0.373261 0.374383 6.95950 6.929890 
14.0 0.51693 0.366304 0.367272 7.47672 7.447540 
16.0 0.51350 0.354405 0.355118 8.51150 8.486053 
18.0 0.51099 0.344644 0.345167 9.54526 9.524237 
20.0 0.50913 0.336520 0.336905 10.57651 10.559464 

a The LCAO MO results above the broken line are from the 2~u calculation, those below the line 
from the 3or u calculation 

Table A.6. The 2pTr u state 

R r - E  - E  (exact) - A '  - A '  (exact) 

0.2 0.99739 0.997374 0.997377 2.00799 2.007979 
0.4 0.99011 0.989892 0.989932 2.03178 2.031671 
1.0 0.95006 0.947277 0.948216 2.19270 2.189385 
2.0 0.86016 0.851814 0.857544 2.71070 2.682595 
3.0 0.77419 0.761525 0.772888 3.44626 3.376713 
4.0 0.70439 0.686450 0.701649 4.31536 4.206448 
5.0 0.65044 0.625775 0.642770 5.26895 5.131657 
6.0 0.60924 0.576723 0.593983 6.27937 6.125876 
8.0 0.55420 0.503851 0.519021 8.40809 8.250623 

10.0 0.52375 0.453759 0.465433 10.61442 10.47479 
12.0 0.50877 0~418428 0.426569 12.86428 12.72649 
14.0 0.50286 0.393007 0.398254 15.04143 14.95673 
16.0 0.50128 0.374294 0.377505 17.19950 17.14085 
18.0 0.50117 0.360102 0.362037 19.31487 19.27649 
20.0 0.50131 0.348979 0.350167 21.39811 21.37357 
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Table A.7. The 3d~g state 
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R ~" - E  - E  (exact) - A '  - A '  (exact) 

0.2 0.42951 0.428975 0.444557 6.00245 6.002540 
0.4 0.43196 0.430032 0.444892 6.00983 6.010168 
1.0 0.44503 0.435551 0.447113 6.06218 6.063825 
2.0 0.47519 0.447150 0.453399 6.25476 6.258285 
3.0 0.50469 0.456265 0.459371 6.58283 6.586452 
4.0 0.52682 0.460253 0.461907 7.04045 7.042433 
5.0 0.53999 0.459116 0.460228 7.61259 7.611205 
6.0 0.54558 0.454063 0.455078 8.28056 8.274369 
8.0 0.54314 0.437521 0.438783 9.83327 9.816631 

10.0 0.53380 0.418348 0.419834 11.58362 11.56030 
12.0 0.52418 0.400048 0.401550 13.45710 13.43219 
14.0 0.51642 0.383815 0.385176 15.40645 15.38344 
16.0 0.51082 0.369865 0.371010 17.40084 17.38126 
18.0 0.50705 0.358034 0.358952 19.41990 19.40401 
20.0 0.50463 0.348039 0.348753 21.45063 21.43808 
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